Central Processing Unit (CPU)
Komponen CPU
Diagram
blok sederhana sebuah CPU.
Komponen
CPU terbagi menjadi beberapa macam, yaitu sebagai berikut.
- Unit kontrol yang mampu mengatur jalannya program. Komponen ini sudah pasti terdapat dalam semua CPU. CPU bertugas mengontrol komputer sehingga terjadi sinkronisasi kerja antarkomponen dalam menjalankan fungsi-fungsi operasinya. termasuk dalam tanggung jawab unit kontrol adalah mengambil intruksi-intruksi dari memori utama dan menentukan jenis instruksi tersebut. Bila ada instruksi untuk perhitungan aritmatika atau perbandingan logika, maka unit kendali akan mengirim instruksi tersebut ke ALU. Hasil dari pengolahan data dibawa oleh unit kendali ke memori utama lagi untuk disimpan, dan pada saatnya akan disajikan ke alat output. Dengan demikian tugas dari unit kendali ini adalah:
- Mengatur dan mengendalikan alat-alat masukan (input) dan keluaran (output).
- Mengambil instruksi-instruksi dari memori utama.
- Mengambil data dari memori utama (jika diperlukan) untuk diproses.
- Mengirim instruksi ke ALU bila ada perhitungan aritmatika atau perbandingan logika serta mengawasi kerja dari ALU.
- Menyimpan hasil proses ke memori utama.
- Register merupakan alat penyimpanan kecil yang mempunyai kecepatan akses cukup tinggi, yang digunakan untuk menyimpan data dan/atau instruksi yang sedang diproses. Memori ini bersifat sementara, biasanya digunakan untuk menyimpan data saat di olah ataupun data untuk pengolahan selanjutnya. Secara analogi, register ini dapat diibaratkan sebagai ingatan di otak bila kita melakukan pengolahan data secara manual, sehingga otak dapat diibaratkan sebagai CPU, yang berisi ingatan-ingatan, satuan kendali yang mengatur seluruh kegiatan tubuh dan mempunyai tempat untuk melakukan perhitungan dan perbandingan logika.
- ALU unit yang bertugas untuk melakukan operasi aritmetika dan operasi logika berdasar instruksi yang ditentukan. ALU sering di sebut mesin bahasa karena bagian ini ALU terdiri dari dua bagian, yaitu unit arithmetika dan unit logika boolean yang masing-masing memiliki spesifikasi tugas tersendiri. Tugas utama dari ALU adalah melakukan semua perhitungan aritmatika yang terjadi sesuai dengan instruksi program. ALU melakukan semua operasi aritmatika dengan dasar penjumlahan sehingga sirkuit elektronik yang digunakan disebut adder.
Tugas
lain dari ALU adalah melakukan keputusan dari suatu operasi logika sesuai
dengan instruksi program. Operasi logika meliputi perbandingan dua operand
dengan menggunakan operator logika tertentu, yaitu sama dengan (=), tidak sama
dengan (¹ ), kurang dari (<), kurang atau sama dengan (£ ), lebih besar dari
(>), dan lebih besar atau sama dengan (³ ).
- CPU Interconnections adalah sistem koneksi dan bus yang menghubungkan komponen internal CPU, yaitu ALU, unit kontrol dan register-register dan juga dengan bus-bus eksternal CPU yang menghubungkan dengan sistem lainnya, seperti memori utama, piranti masukan /keluaran.
Cara Kerja CPU
Saat data dan/atau instruksi dimasukkan ke
processing-devices, pertama sekali diletakkan di MAA (melalui Input-storage);
apabila berbentuk instruksi ditampung oleh Control Unit di Program-storage,
namun apabila berbentuk data ditampung di Working-storage). Jika register siap untuk menerima pengerjaan
eksekusi, maka Control Unit akan mengambil instruksi dari Program-storage untuk
ditampungkan ke Instruction Register, sedangkan alamat memori yang berisikan
instruksi tersebut ditampung di Program Counter. Sedangkan data diambil oleh
Control Unit dari Working-storage untuk ditampung di General-purpose register (dalam hal ini di Operand-register). Jika berdasar
instruksi pengerjaan yang dilakukan adalah arithmatika dan logika, maka ALU
akan mengambil alih operasi untuk mengerjakan berdasar instruksi yang
ditetapkan. Hasilnya ditampung di Akumulator. Apabila hasil pengolahan telah
selesai, maka Control Unit akan
mengambil hasil pengolahan di Accumulator untuk ditampung kembali ke Working-storage. Jika pengerjaan
keseluruhan telah selesai, maka Control
Unit akan menjemput hasil pengolahan dari Working-storage untuk ditampung ke Output-storage. Lalu selanjutnya dari Output-storage, hasil pengolahan akan ditampilkan ke output-devices.
Fungsi CPU
CPU berfungsi seperti kalkulator,
hanya saja CPU jauh lebih kuat daya pemrosesannya. Fungsi utama dari CPU adalah
melakukan operasi aritmetika dan logika terhadap data yang diambil dari memori atau dari informasi yang dimasukkan
melalui beberapa hardware, seperti tombol, scaner. CPU dikontrol menggunakan sekumpulan instruksi software komputer. Software tersebut dapat dijalankan oleh CPU dengan membacanya dari
media penyimpan, seperti cakram, diket maupun pita perekam. Instruksi-instruksi tersebut kemudian disimpan terlebih dahulu
pada Memori Fisik (MAA), yang mana setiap instruksi
akan diberi alamat unik yang disebut alamat memori. Selanjutnya, CPU dapat
mengakses data-data pada MAA dengan menentukan alamat data yang dikehendaki.
Saat sebuah program dieksekusi, data mengalir dari RAM
ke sebuah unit yang disebut dengan ''bus",
yang menghubungkan antara CPU dengan MAA. Data kemudian didekode dengan
menggunakan unit proses yang disebut sebagai pendekoder instruksi yang sanggup
menerjemahkan instruksi. Data kemudian berjalan ke Arimerik Logic Unit (ALU) yang melakukan
kalkulasi dan perbandingan. Data bisa jadi disimpan sementara oleh ALU dalam sebuah lokasi
memori yang disebut dengan register supaya dapat diambil kembali dengan cepat
untuk diolah. ALU dapat melakukan operasi-operasi tertentu, meliputi penjumlahan, perkalian,
pengurangan, pengujian kondisi terhadap data dalam register, hingga mengirimkan
hasil pemrosesannya kembali ke memori fisik media penyimpan, atau register
apabila akan mengolah hasil pemrosesan lagi. Selama proses ini terjadi, sebuah
unit dalam CPU yang disebut dengan penghitung program akan memantau instruksi
yang sukses dijalankan supaya instruksi tersebut dapat dieksekusi dengan urutan
yang benar dan sesuai.
Percabangan instruksi
Pemrosesan instruksi dalam CPU dibagi atas dua tahap,
Tahap-I disebut Instruction Fetch, sedangkan Tahap-II disebut Instruction
Execute. Tahap-I berisikan pemrosesan CPU dimana Control Unit mengambil data
dan/atau instruksi dari main-memory ke register, sedangkan Tahap-II berisikan
pemrosesan CPU dimana Control Unit menghantarkan data dan/atau instruksi dari
register ke main-memory untuk ditampung di MAA, setelah Instruction Fetch
dilakukan. Waktu pada tahap-I ditambah dengan waktu pada tahap-II disebut waktu
siklus mesin (machine cycles time).
Penghitung program dalam CPU umumnya bergerak secara
berurutan. Walaupun demikian, beberapa instruksi dalam CPU, yang disebut dengan
instruksi lompatan, mengizinkan CPU mengakses instruksi yang terletak bukan
pada urutannya. Hal ini disebut juga percabangan instruksi (branching
instruction). Cabang-cabang instruksi tersebut dapat berupa cabang yang
bersifat kondisional (memiliki syarat tertentu) atau non-kondisional. Sebuah
cabang yang bersifat non-kondisional selalu berpindah ke sebuah instruksi baru
yang berada di luar aliran instruksi, sementara sebuah cabang yang bersifat
kondisional akan menguji terlebih dahulu hasil dari operasi sebelumnya untuk
melihat apakah cabang instruksi tersebut akan dieksekusi atau tidak. Data yang
diuji untuk percabangan instruksi disimpan pada lokasi yang disebut dengan
flag.
Bilangan yang dapat ditangani
Kebanyakan CPU dapat menangani dua jenis bilangan,
yaitu fixed-point dan foating point. Bilangan fixed-point memiliki
nilai digit spesifik pada salah satu titik desimalnya. Hal ini memang membatasi
jangkauan nilai yang mungkin untuk angka-angka tersebut, tetapi hal ini justru
dapat dihitung oleh CPU secara lebih cepat. Sementara itu, bilangan floating-point
merupakan bilangan yang diekspresikan dalam notasi ilmiah, di mana sebuah angka
direpresentasikan sebagai angka desimal yang dikalikan dengan pangkat 10
(seperti 3,14 x 1057). Notasi ilmiah seperti ini merupakan cara yang
singkat untuk mengekspresikan bilangan yang sangat besar atau bilangan yang
sangat kecil, dan juga mengizinkan jangkauan nilai yang sangat jauh sebelum dan
sesudah titik desimalnya. Bilangan ini umumnya digunakan dalam
merepresentasikan grafik dan kerja ilmiah, tetapi proses aritmatika terhadap
bilangan floating-point jauh lebih rumit dan dapat diselesaikan dalam waktu
yang lebih lama oleh CPU karena mungkin dapat menggunakan beberapa siklus detak
CPU. Beberapa komputer menggunakan sebuah prosesor sendiri untuk menghitung
bilangan floating-point yang disebut dengan FPU (disebut juga math
co-processor) yang dapat bekerja secara paralel dengan CPU untuk mempercepat
penghitungan bilangan floating-point. FPU saat ini menjadi standar dalam banyak komputer karena kebanyakan aplikasi saat ini banyak beroperasi menggunakan bilangan floating-point.
Komentar
Posting Komentar